Observing Spatial and Temporal Variations in Air Quality in the Salt Lake Valley Using Mobile Platforms

Erik Crosman¹, Logan E. Mitchell¹, Alexander Jacques¹, John Horel¹, John C. Lin¹

¹ Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT; ² Department of Biology, University of Utah, Salt Lake City, UT; * Corresponding author. E-mail address: erik.crosman@utah.edu

Motivation for Study

Improved understanding of the spatial complexity and temporal variability of air pollutants during both summer and winter are needed along Utah's Wasatch Front.

Methodology:

- Continuously measure greenhouse gases & criteria pollutants across the Salt Lake Valley along a fixed spatial route using a light rail car as a measurement platform.
- Targeted mobile observations in a news helicopter and several vehicles during summer 2015 during the Great Salt Lake Summer Ozone Study (GSLSO₃S).

Goals:

- Test the feasibility of using a light rail platform to measure across rural and urban typologies.
- Supplement surface data from light rail platform with

Particulate Matter (PM)

Two optical particle counter instruments: measure PM
(1) Met One E-Sampler, heated inlet, PM_{2.5} cyclone, 1-minute averages.
(2) GRIMM 1109, no heated

inlet, PM in 31-size channels (0.25-32 μ m), 6-sec resolution.

Mobile Ozone Observations during the Great Salt Lake Summer Ozone Study (GSLSO₃S) June-August 2015

Goals of study:

- What is the influence of GSL on ozone formation on Wasatch Front?
- What is the spatial and temporal distribution of ozone?
- Document the meteorology of high ozone events
- Increase accuracy of pollution forecasting

- More details on the study can be found
- at the study website:

https://gslso3s.wordpress.com/

- helicopter data aloft and additional mobile vehicles
- Improve understanding of the spatial and temporal patterns of greenhouse gases & criteria air pollutants.

Utah Transit Authority (UTA) TRAX light rail system:

- Red Line: traverses the entire Salt Lake Valley (northeast to southwest)
- Green Line: runs from the SLC airport to West Valley.

KSL Chopper 5

- Often traverses Salt Lake Valley along major traffic corridors at elevation between 200-800 m AGL.
- Sometime travels outside of the SLV for breaking news
- Great Salt Lake research flight on June 17th 2015.

Mobile Units

Several vehicles were

- Higher $PM_{2.5}$ observed frequently along the central urban corridor with lower $PM_{2.5}$ on the valley benches.
- Red Line allows for quasi-vertical profiles of PM_{2.5} & GHGs during inversions.

Comparative PM_{2.5} analyses underway:

- (1) E-Sampler vs. GRIMM as PM_{2.5} instruments.
- (2) Mobile versus fixed-site observations maintained by Utah DAQ (Hawthorne).

(3) CO_2 as a surrogate proxy for $PM_{2.5}$.

Summer 2014 TRAX Averages

Computed over the course of month Aug-Sept 2014

Carbon dioxide

5 June ~5 pm

17 June ~5 pm

Initial GSLSO₃S Study Findings

 High spatial and temporal variations in O₃ over and surrounding the Great Salt Lake.

12 June ~5 pm

Complex terrain meteorology and lake breezes are important factors in precursor transport and afternoon ozone transport.

instrumented.

Instrumentation TRAX

- Dec 8, 2014 to present.
- Sensors and sampling on roof.
- Measures $PM_{2.5}$, PM_{10} , CO_2 , CH_4 .and $O_{3.}$
- KSL Chopper 5
- 17June-present.
- 2B Technology O₃ sensor
- Department of Atmospheric Sciences Truck and Nerdmobile
- 17June-present only during intensive observational periods.
- 2B Technology O₃ sensor.

Methane

(http://co2.utah.edu)

Ozone Study.

Ozone 7 am

Ozone 3 pm

- KSL chopper has given insight into background ozone and elevated layering of ozone above the urban core.
- Great Salt Lake temperature may play a role in modulating shallow boundary-layer depth and ozone concentrations.
- Biogenics, playa albedo enhancements, wildfire smoke, and chlorine chemisty over Great Salt Lake brine may all be important.

Truck transects on 17 June 2015

Upcoming TRAX Possibilities

 Expand TRAX setup to additional rail cars to increase spatial & temporal coverage.

Ozone Monitor

- Low-cost sensors on additional trains.
- Additional trace gas species that could be added include: (a) NOx (NO₂ and N₂O) would assist in closing the ozone budget, (b) ethane (C₂H₆) would provide a distinction between biogenic & fossil CH₄ sources, and (c) radon (²²²Rn) would constrain local atmospheric mixing.

Choppe

(http://meso1.chpc.utah.edu/mesotrax/

(b) Great Salt Lake Summer Ozone Study (<u>http://meso2.chpc.utah.edu/gslso3s/</u>)
(c) 5-station, urban CO₂ network

(d) MesoWest (http://mesowest.utah.edu/)

Jessen, Elijah Jackson, Tal Brooks, & the rest of

students and faculty who are a part of this study:

Division of Air Quality for supporting the Summer

Ben Fasoli, Will Howard, and Nate Larson. We

also acknowledge Seth Arens and the Utah

We gratefully acknowledge technical & logistic

support from UTA TRAX & Siemens (Teresa

UTA TRAX staff) as well as the following

THE UNIVERSITY OF UTAH

Group

18 June Lake Breeze Front

- Mobile truck, TRAX, and KSL Chopper sensors provided unprecedented view of spatial ozone distribution with Great Salt Lake breeze front.
- Much higher O_3 at and behind lake breeze front.
- Spike in O3 at breeze front (up to 115 ppb).
- 20 ppb increase across front.