

ESA Ground-Based Air-Quality and Satellite Validation Network

Martin Tiefengraber^{1,2} and Alexander Cede^{1,3}

- LuftBlick, Kreith, Austria
- ² Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
- ³ NASA/Goddard Space Flight Center, GSFC, Greenbelt, MD, USA
- **Correspondence to: Martin Tiefengraber (martin.tiefengraber@luftblick.at)**

MOTIVATION

Uninterrupted, well-maintained, homogeneously calibrated time series of ground-based remote sensing data are the backbone for validation of trace gas columns measured from satellite.

MAJOR DATA PRODUCTS

 \triangleright O₃ and NO₂ total and tropospheric columns

While these data are available for O_3 validation, no comparable network is existing for validation of other satellite-derived trace gas data as e.g. NO_2 . PANDONIA shall be a key element for validation of existing and upcoming satellite missions with a focus on atmospheric chemistry.

SATELLITE MISSIONS

Table 1 : Existing and upcoming satellite missions where PANDONIA plays a key role in the validation infrastructure.

Mission	Launch	Instrument	Products	
ESA missions				
EarthCARE	2016	MSI	Aerosol, Clouds	
ADM-Aeolus	2016	ALADIN	Aerosol, Clouds	
Sentinel 3A	Late 2015	MWR, OLCIS, LSTR	Aerosol, H ₂ O	
Sentinel 5P	2016	TROPOMI	O_3 , NO_2 , SO_2 , HCHO, Aerosol, Clouds, CO^* , CH_4^*	
Sentinel 3B	Early 2017	MWR, OLCIS, LSTR	Aerosol, H ₂ O	
Sentinel 4	2021?	UVN	O_3 , NO_2 , SO_2 , HCHO, Aerosol	
Sentinel 5	2021?	UVNS	O_3 , NO_2 , SO_2 , HCHO, Aerosol, Clouds, CO^* , CH_4^*	
Third party missions				
AQUA	1999	MODIS	Aerosol	
TERRA	2002	MODIS	Aerosol	
AURA	2004	OMI	O_3 , NO_2 , SO_2 , HCHO, BrO, Aerosol	
* not measured by PANDONIA				

- \triangleright O₃ and NO₂ near surface concentrations
- ► Effective O_3 and NO_2 temperature
- ► Spectral AOD from 340 to 900 nm.
- \triangleright SO₂, HCHO, BrO and H₂O total columns

OBSERVATION SITES

Figure 1 : Existing (red), soon (blue), planned (green) and NASA (purple) stations as part of the PANDONIA network (effective Aug 2015).

CORE INSTRUMENT

Spectrometer system for direct sun, sky radiance and direct moon observations: Pandora and Pandora-2S.

Table 2 : Specifications of Pandora / Pandora-2S spectrometer system.

HOMOGENEITY

Figure 2 : Calibration procedure for PANDONIA instruments. Laboratory characterized instruments become either monitoring (black), mobile reference (blue) or stationary reference instruments. Mobile reference instruments transfer the calibration from stationary references to the monitoring instruments \longrightarrow no interruption of the time series!

Data handling

Optical bench	temperature-stabilized symmetric Czerny-Turner (Avantes)	
Detector	2048×64 back-thinned Hamamatsu CCD	
Wavelength range	270 to 530 nm	
	and 400 to 900 nm*	
Resolution	0.6 nm	
	1.1 nm*	
Oversampling	4.5	
Field of view	2.2° direct-sun observations, 1.6° sky observations	
* only Pandora-2S		

Acknowledgments:

Ongoing project funded by the European Space Agency (ESA).