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* During the winter cold air from the Asian continent moves across the Sea of Japan (~400 km across), producing seemingly
omnipresent snowbands that impact the west coast of Japan
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* To explore the changes in structure and precipitation mechanism to the wind shear vector (between surface and
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* To determine the controls of precipitation distribution over the * Account for ~12% of observed lake-effect
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FUTURE WORK: Complete dual-Doppler analysis to produce a three- FUTURE WORK: Analyze microphysics and structure using WRF runs; Perform additional sensitivity
dimensional ana|ysis of transverse band structure and evolution studies inCIUding removal of terrain north of the Ishikari Plain.
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* Transverse-mode bands produce sporadic bursts of precipitation and focused precipitation
maxima over and around affected terrain

* Transverse bands intensify as they cross high terrain, suggesting an invigoration of convection

* Flow diverted around coastal terrain creates acceleration and convergence just upstream of the

precipitation maximum REFERENCES

* High coastal terrain creates precipitation maxima that disappear when model simulations are Nakai, S., K. lIwanami, R. Misumi, S.-G. Park, and T. Kobayashi, 2005: A
run with no terrain Classification of Snow Clouds by Doppler Radar Observations at Nagaoka,

Japan. SOLA, 1, 161-164.




