Abstract:
The dynamical relations between the equatorial mountain torques and the cold surges are analysed in the LMDz-GCM. After verification that the Equatorial AAM budget is well closed in the model (not shown) we confirm that the equatorial torques due to the Tibetan plateau, the Rockies and the Andes are well related to the cold surges developing over South Eastern China, North America, and the Southern South America respectively. For all these mountains, a peak in the Equatorial mountain torque component that points locally toward the pole precedes by few days the development of the cold surges (as in observations).

The contributions to the torques of the parameterized forces is substantial. But in experiments without the parameterized stresses, the explicit terms partly compensate the parameterized contributions to the torque and the cold surges are not much affected. This shows that the cold surges can be well captured by models, providing that the synoptic conditions prior to this onset are well represented. The compensation between torques is nevertheless not complete and some weakening of the cold surges is found when the mountain forcings are reduced.

AAM Budget and Equatorial Mountain Torques

The mountain torques are the dominant forcing of the equatorial components of the Atmospheric Angular Momentum budget (compared to the frictional torques).

\[
\frac{d}{dt} \left(\vec{M}_r + \vec{M}_r' \right) + \vec{\Omega} \times \vec{M}_r = \vec{T}_M + \vec{T}_r' \\
\vec{M}_r \quad \text{Wind AAM} \\
\vec{M}_r' \quad \text{Mass AAM} \\
\vec{T}_M \quad \text{Mountain torque} \\
\vec{T}_r' \quad \text{Parametrized torque}
\]

Dynamical origin

How a poleward « force » can result in a cold surge at a later stage (few days)

- \(U_g \): Geostrophic wind
- \(F_r \): Reactive force on the flow
- \(P_s \): Surface pressure
- \(\mathbf{F} \): Reactive force applied by the mountain on the atmosphere (almost perpendicular to the local wind)
- \(\mathbf{T}_M \): Torques applied by the mountain on the atmosphere

Surface pressure anomaly composite in the LMDz – GCM (almost identical Results from NCEP)

Composites keyed to the first component of the Eq. Mountain torque due to the Tibetan plateau

This transport of mass build up a high pressure pattern on the eastward slope of the mountain

Composites keyed on \(T_{M1} \):

Runs with and without SSO parameterizations

\(T_{M1} \) composite in runs with SSO
\(T_{M1} \) composite in runs without SSO

Surface pressure composite at day=2 lag

With SSO parameterizations
Without SSO parameterizations

This is an attempt to validate mountain subgrid scale parametrizations by looking at their systematic impacts on synoptic scale systems.