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where   is the Fourier transform of the 
surface elevation. A radiation or wave 
decay boundary condition as z→∞, and 
conditions prescribing the continuity 
of and of the pressure (or its 
Fourier transform) at the interface 
between the two atmospheric layers 
are prescribed. These layers are defined 
for Case 1 and Case 2 by the potential 
temperature profiles shown in Figure 1.
l1 and l2 are the Scorer parameters in 
the lower and upper layer. H is the 
height of the lower layer.

In global numerical weather and climate prediction models, the drag 
associated with trapped lee waves is typically not represented, either 
explicitly (because the associated waves are not resolved) or in the 
orographic drag parametrization scheme (because these waves are hard to 
parametrize). However, there are reasons to believe that this drag is 
important, and that it may be mistakenly represented in these models by 
artificially increasing the boundary layer drag, which accounts for different 
physical processes and has a distinct dependence on the flow parameters. 
Smith [1] derived a generic expression for the drag associated with 
trapped lee waves in flow over a 2D ridge, and Gregory et al. [2] extended 
this expression to flow over 3D orography. However, these expressions did 
not allow a systematic exploration of parameter space. Teixeira et al. [3]
and Teixeira et al. [4] explored the drag behaviour as a function of flow 
parameters for flow over a 2D ridge, for a 2-layer atmosphere akin to that 
adopted by Scorer [5], i.e. with higher static stability in the lower layer and 
lower static stability in the upper layer (Case 1) and for the atmosphere of 
Vosper [6], i.e. with neutral stability in the lower layer, stable stratification 
in the upper layer, and an inversion in between (Case 2), respectively. Here, 
this approach is extended to flow over an axisymmetric mountain. 
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Conclusions
For the preceding results using idealized two-layer atmospheres, it is clear that trapped lee wave drag 
gives a substantial contribution to the total drag, larger than the hydrostatic single-layer limit, as long as 
the flow conditions are tuned to lead to resonant drag enhancement by constructive wave interference. It 
therefore seems necessary to consider the effect of trapped lee waves in drag parametrizations used in 
weather and climate prediction models, especially as their resolution increases to O(10km) or above. The 
trapped lee wave drag calculations presented here pave the way for the development of such 
representations, as it is straightforward to extend them to the mountains with an elliptical horizontal 
cross-section used in parametrization schemes through a simple coordinate transformation.
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The drag normalized by the hydrostatic value it would have if the lower layer extended indefinitely is shown in 
Figure 2 as a function of l1H, for l2/l1=0.2 and different l1a. The drag oscillates with l1H, attaining maxima near 
l1H/π=0.5+n, where n is an integer, and minima in between, due to constructive and destructive interference of 
upward and downward propagating waves, respectively. Drag maxima produced by trapped lee waves tend to 
occur for slightly higher l1H than those produced by vertically propagating waves, and become more 
dominant as l1a decreases. The trapped lee wave drag takes values exceeding the hydrostatic one-layer limit.

Figure 4 shows the drag as a function of Fr normalized by its hydrostatic value valid if the upper layer extended 
down to the surface, for l2H=0.5and different values of l2a. Unlike in Case 1, the normalized drag has one single 
maximum, occurring in the vicinity of Fr=1, but this maximum can also exceed 1. The trapped lee wave drag is 
concentrated predominantly for Fr<1, while the drag associated with internal waves occurs mostly for Fr>1. 
Again, the trapped lee wave drag becomes more dominant over the internal wave drag as l2a increases (i.e. the 
flow becomes more non-hydrostatic). Figure 5 shows cross sections of w for z=H (the inversion where the 

Figure 2. Normalized drag as a function of l1H/π for l2/l1=0.2. (a) l1a=10, (b) l1a=5, (c) l1a=2.

Summary
The drag produced by trapped lee waves in flow over an axisymmetric
mountain is explicitly calculated for 2-layer atmospheres where the 
stratification is either stronger in the lower layer and weaker in the upper 
layer, or neutral in the lower layer and stable in the upper layer, with a 
sharp temperature inversion in between. In both cases, the drag is 
produced simultaneously by waves that propagate in the upper layer, and 
3D lee waves (trapped in the lower layer in the first case and trapped at 
the inversion in the second), which form a “ship-wake” pattern 
originating above the obstacle downstream of the mountain.  Because of 
additional directional wave dispersion effects relative to the 
corresponding 2D flow, the drag enhancement in resonant conditions is 
less pronounced. However, the drag may still take values well above the 
hydrostatic limit valid if the upper stably stratified layer extended down 
to the surface, with a sizeable contribution coming from trapped lee 
waves. The results obtained using linear theory are compared with 
numerical simulations, showing good agreement.

2. Theoretical Model
The flow is assumed to be inviscid, non-rotating, and linearized. Variations 
of the wind with height are ignored and the wave trapping mechanism is 
due to the variation of the static stability with height. The Taylor-Goldstein 
equation then takes the form: 

(1)

where    is the Fourier transform of the vertical velocity perturbation 
associated with the waves, l=N/U is the Scorer parameter (where U and N
are, respectively, the wind velocity and Brunt-Vaisala frequency of the 
incoming flow), and (k1,k2) is the horizontal wavenumber vector of the 
waves. The solution to this equation must satisfy a free-slip boundary 
condition at the surface: (2)

The ultimate aim is to calculate the value of the 
drag, given by:

(3)

where     is the Fourier transform of the pressure perturbation. For Case 1, 
the resonance condition for the existence of trapped lee waves is

(4)

whereas for Case 2, the resonance condition is instead

(5)

where m1 and n2 are, respectively, the vertical wavenumber of the waves 
trapped in the lower layer and the equivalent vertical wave decay rate in 
the upper layer, k12=(k1

2+k2
2)1/2 and Fr=U/(g’H)1/2 is a Froude number, 

where g’=g∆θ/θ0 is the reduced gravity based on the temperature jump at 
the inversion. In either case, these conditions enable the double integral in 
(3) to become a single integral for the trapped lee wave drag contribution.

Figure 3. Horizontal cross-sections of w at z=H/2 for l1H=0.5and l2/l1=0.2. (a),(c) Numerical, (b),(d) analytical. (a),(b) l1a=5, (c),(d) l1a=2.

trapped lee waves propagate). Also here, there is a triangular wake originating over the mountain akin to a 
ship wake, which is well reproduced by the analytical model for both values of l2a considered.  
Case 1 and Case 2 show that the total drag results from a superposition between the trapped lee wave drag 
and the internal gravity wave drag, however, the former drag acts at lower levels in the atmosphere.
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Figure 1. Potential temperature profiles for 
(a) Case1 and (b) Case2. ∆θ is the inversion 
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Figure 5. Horizontal cross-sections of the w at z=H for Fr=0.85and l2H=0.5. (a), (c) Numerical, (b),(d) analytical. (a),(b) l2a=2, (c),(d) l2a=1.

Figure 4. Normalized drag as a function of Fr for l2H=0.5. (a) l2a=2, (b) l2a=1, (c) l2a=0.5.

Figure 3 shows horizontal cross-sections of w at z=H/2 for l2/l1=0.2 and l1H/π=0.5 (first drag maximum). The 
trapped lee waves (which in this case are internal waves propagating horizontally in the lower layer) form a 
triangular wake downstream of the mountain, reminiscent of a ship wake. Clearly, the wave structure is 
reproduced, at least qualitatively, by the analytical solution, which in principle should only be valid for x/H>>1.
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