

Towards a local similarity framework for scalar turbulence in very complex terrain

E.Sfyri, M.W. Rotach, I. Stiperski, F. Obleitner

Introduction

Monin-Obukhov similarity theory (MOST) Valid in principle for Horizontally Homogeneous and Flat surfaces (HHF)

Similarity

- Can solve the closure problem in conservation equations
- Also necessary in complex terrain
- Applied in numerical models
- Useful in hydrology, air-quality applications etc.
- Research question: MOST or local scaling in complex terrain?

Research method

- Experimental data
 - From 5 i-Box sites (Fig.1; table 1)
 - 17 months (8/2013-12/2014)
- Post-processing method
 - Double Rotation/Multiple despiking
 - High quality criteria (Stiperski and Rotach, 2015)
 - Additional humidity filter: weak signal periodicity → discarded signal<50mV
- Similarity considerations
 - MOST: Universal functions

Table 1: Main characteristics of the i-Box measurement sites.

Sites	Name	Slope (°)	Levels	Tower Height (m)	Elevation (m)	Orientation
Kolsass	CS-VF0	0	3	16.93	545	Valley floor
Terfens	CS-SF8	8	2	12	575	South-facing
Eggen	CS-SF1	1	1	6,6	829	South-facing
Weerberg	CS-NF10	10	1	7	930	North-facing
Hochhäuser	CS-NF27	27	1	6.8	1009	North-facing
(*) Arbeser	CS-MT21	21	1	4	2020	Mountain-top

- Local scaling: individual best-fit functions
- General formulation for temperature and humidity variance for stable and unstable :

$$\frac{\sigma_x}{x_*} = \alpha (1 + b|\zeta|)^c \qquad (a)$$

- MOST: c=-1/3 (for ζ<0) and c ≈0 (for ζ>0)
- Local (e.g. Nadeau et al. 2013):c=-1/3 (for ζ <0) and c ≈0 (for ζ >0)

Fig. 1: The i-Box area in the Inn Valley and the 6 i-Box sites , Kolsass (K), Terfens (T), Eggen (E), Weerberg (W) and Hochhauser (H).

Image: q_ unstable Results of temperature variance unstable Local scaling can be applied : similarity functions (Table 2) The -1/3 exponent is successful : small root-mean-square errors (RMS)

- No neutral limit (Fig. 3) (Tampieri et al. 2009)
- No general complex terrain formulation is found (yet?)

stable

- Larger scatter than unstable (Fig. 3)
- Again in near-neutral limit the similarity functions diverge (Tampieri et al. 2009)
- The -1 exponent is not successful at all stations
 - The flat sites (Kolsass and Eggen) present very small exponent
 - Slope dependence of the exponent?

Figure 3 : Scaled standard deviation of temperature and humidity with the stability parameter ζ=z/L, for ζ<0 (unstable) and ζ>0 (stable), for Kolsass (K), Terfens (T), Eggen (E), Weerberg (W) and Hochhauser (H). The best-fit curve for every data set and the curve fit of Nadeau et al (2013) are shown, until ζ=0.05 (only for temperature variance) in order to exclude the large scatter in near-neutral conditions.

Results of humidity variance				
unstable				
*	Large scatter (Fig. 3)			
***	The -1/3 exponent seems to be successful			

Table 2: Coefficients of best-fit similarity functions for temperature variance and RMS, with respect to best fit curve and from literature curve (Nadeau et al. 2013), for the 5 i-Box sites, for ζ >0 and ζ <0.

i-Box sites	Fitting curves				RMS (Nadeau et al. 2013)		RMS (best fit)	
	$\zeta < 0$ (unstable)		ζ>0 (stable)		ζ<0	ζ>0	ζ<0	ζ>0
	а	b	а	b	unstable	stable	unstable	stable
Kolsass	2.66	-4.67	3.34	0	0.4	1.79	0.19	1.2
Terfens	3.03	-8.45	4.64	0.57	0.48	3.22	0.24	1.44
Eggen	5.81	-99.75	3.06	0.01	0.5	1.18	0.24	1.06
Weerberg	5.74	-100.73	3.37	0.35	0.43	1.71	0.26	1.42
Hochhauser	4.39	-32.12	3.01	0.31	0.79	0.72	0.45	0.68
Nadeau et al. 2013	2.67	-16.29	3.22	0.83				

Conc	lusions

- ✓ Local similarity can be applied at i-Box sites, for
 - temperature (stable and unstable) and for

humidity variance (unstable)

✓ No universality of the results (different functions)

- Near-neutral: finite value approached
- No general complex terrain formulation

stable

- Large scatter for all i-Box sites (Fig. 5) in accordance to previous literature (e.g. Moraes et al. 2005)
- Local scaling does not seem to apply: no regularities

Figure 4: Scaled standard deviation of humidity with the stability parameter $\zeta = z/L$, for $\zeta > 0$ (stable), for Hochhauser.

than literature)

- ✓ The best-fit curve is in most of the cases higher than the Nadeau et al. (2013) curve
- ✓ Site-to-site dependence for temperature variance

Temperature variance (stable): the -1 exponent is not valid in the flat i-Box sites

- Slope dependence?
- ✓ Similar curves for i-Box sites in the case of humidity variance (unstable)
 - Can one local similarity function be applied in

complex terrain?

References

Foken T., and Wichura B. 1996. Agric. For. Meteor., 78, 83–105. Moore, C. J., 1986. Bound.-Layer Meteor., 37, 17–35. Moraes O.L.L., Acevedp O.C., Degrazia G.A., Anfossi D., da Silva R., Anabor V. 2005. AtmosEnvion 39: 3103-3112. Nadeau D.F., Pardyjak E.R., Higgins C.W., Parlange M.B. 2013. Boundary-Layer Meteorol, 147, 401–419, DOI 10.1007/s10546-012- 9787-5. Schotanus P., Nieuwstadt F.T.M., De Bruin H.A.R. 1983. Boundary-Layer Meteorol, 26, 81-93. Stiperski I., Rotach M.W. 2015. In press, Boundary-Layer Meteorol. Tampieri F., Maurizi A., Viola A. 2009. Boundary-Layer Meteorol 132:31–42. Tillman, J. E. 1972. J. Appl. Meteorol. 11:753 792. Wyngaard J.C. 1973. Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, 101-150. Van Dijk A., Kohsiek W. DeBruin H.A.R. 2003. J Atmos Oceanic Tech, 20, 143-151. Contact: eleni.sfyri@ulbk.ac.at