

Trend analysis of snow water equivalent in the Alps

Anna-Maria Tilg^{1,2}, Christoph Marty¹, Tobias Jonas¹, Michael Kuhn²

¹ WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

² Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Austria

- Snow water equivalent (SWE) is the depth of water that results if the whole snowpack melts
- Monitoring SWE is important for:
 - Water supply
 - Hydropower industry (forecast of the discharge)
 - Safety of buildings/snow load (maximal SWE)
 - Flood forecasting

Aim of this study:

Data

- 66 stations are situated between 518 and 2945m
- Time series have between 34 and 76 years of data
- Different methods used for measuring SWE

Are there significant changes of SWE in the Alps concerning different dates (1st of January and 1st of April) and time periods (30, 40, 50 and 60 years)?

Methods

- Gaps are filled with a parameterisation based on total snow depth (HS)
- Mann-Kendall trend test indicates whether a significant trend is existing or not (significance level used for this study: 90%)

Results

SWE on 1st of January (mid-winter)

SWE on 1st of April (spring)

Fig. 2: Altitude dependence of the relative and absolute change of SWE over the last 40 years (1973 – 2012) on 1st of January

years on the 1st of January (significance level: 90%)

Fig. 3: Altitude dependence of relative and absolute change of SWE over the last 40 years (1973 – 2012) on 1st of April

Fig. 5: Percentage of significant and non-significant trends for the last 30/40/50/60 years on the 1st of April (significance level: 90%)

Fig. 6: Mean SWE over all stations on the 1st of January

Fig. 7: Mean SWE over all stations on the 1st of April

Conclusion

- SWE mainly decreased over the last 60 years
- Percentage of significant negative trends is higher for spring SWE (1st of April) than for mid-winter SWE (1st of January)
- Majority of the non-significant trends indicate also decreasing SWE values
- Relative decreases of significant trends are stronger for lowelevated stations than for higher stations
- SWE trend is independent on region and altitude of the station

Acknowledgements

Thanks to all people who provided SWE data: Johannes Schöber (alpS/TIWAG), Martin Neuner (Hydrographischer Dienst Tirol), Gerold Schneider and Anett Fiedler (DWD), Frédéderic Gottardi (EDF) and Meteodat GmbH

Contact Information

Anna-Maria Tilg

WSL Institute for Snow and Avalance Research SLF Flüelastr. 11, 7260 Davos Dorf, Switzerland E-mail: anna-maria.tilg@slf.ch, Phone: 0041 81 4170 282

