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Introduction Objectives

In the complex terrain of eastern Adriatic where wind climate is governed by * to determine whether an increase of model horizontal resolution and/or complexity improves the wind forecast accuracy
regional and local winds, it is beneficial to utilize a chain of numerical models to
refine wind predictions. Verification of these mesoscale flows is a challenging task
for which adequate moment-based and spectral approaches must be unified and « to perform a scale-dependent model evaluation by spectral decomposition in the frequency domain and relate various
combined. spectral scores with the sources of RMSE
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 to quantify contributions of different sources of error to RMSE and assess changes with model horizontal resolution

Data and methods

Statistical and spectral verification were performed for three different model versions (Tab1.) using measured — b AL8-ALADIN / | DA2-ALADIN / | AL2-ALADIN /
10-min wind speed and direction data from Jasenice, Sibenik and Ogulin stations (Fig1.) in period 2010-2012. k< Model aEEE e | Eeme e | A e
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For spectral analysis and verification we study: 1) kinetic energy spectra at levels in lower, middle and higher ) Range 72 h 72 h 24 h
troposphere and 2) near-surface power spectral density (PSD) functions of modelled and observed data. snp 250 Ut LBCH o o .
¥ u pu -
To assess the relative strength of circulation of diurnal and other periods, we have devided enitre spectral 25N 8 Spin-up allowed oh 9h 3h
range into the following bands!3!: 1) sub-diurnal (SUB, 6h<T<22h), 2) diurnal (DIU; 22 h < T <26 h) and 3) T 14E 15E 16E 17E 18E 19 0
larger than diurnal (LTD;26 h< T <7 d). Fig1. Location of representative stations inside Croatian territory. Table1. Basic information about verified model versions with spin-up
period based on lead time dependant KE spectra analysis.
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Period (days) Period (days) Period (days) Figure legend associates symbols to various data sets (modeled Fig8. Share of individual RMSE components at each station for the
or observed) and groups of stations (bo - bora dominated coastal ALADIN/ALARO 2 km (AL2) forecasts plotted as a function of the share of observed
Fig4. Power spectral density (PSD) of zonal and meridional wind component (Ogulin station) and cross/along-mountain wind components (Jasenice and stations, th - coastal stations with significant portion of thermally spectral power in larger than diurnal (LTD), diurnal (DIU) and sub-diurnal (SUB)
Sibenik stations) for measurements (meas), ALADIN/ALARO 8 km (AL8), ALADIN/DADA 2 km (DA2) and ALADIN/ALARO 2 km (AL2) forecasts. driven flows and hi - highland valley and mountain stations). spectral bands.
Based on wind climate characteristics (Fig6.) and spectral decomposition in the frequency domain Spectral decomposition in the frequency domain (Fig4-5.) suggests that the most significant increase of
(Fig4-5.) we have classified 12 stations in three different groups. So, here we present the results for accuracy with more complex model at 2 km grid spacing was found for diurnal and sub-diurnal periods of
representative stations of these groups. motions in the cross-mountain direction.
Increasement of horizontal resolution of DA2 and AL2 forecasts has led to improvement (decrease of AL2 model ablility to propery simulate the amount of spectral power in different spectral bands is highly
MBIAS and RMSE) over AL8 at two coastal groups of stations (Fig2-3.). Phase errors are major source correlated with the share of BSD (Fig7.). Significant relationship between the share of observed power by
of RMSE (Fig3.) and their contribution generally increases with horizontal resolution and complexity. spectral bands and the share of RMSE components was found only for bora dominated stations (Fig 8.).
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