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é Exploring Rare Extreme Events (REEs) ® Character & Conditioning of REEs

There is still considerable uncertainty in understanding the character of precipitation in space and
time and how it will change in a warming climate. It is crucial for societies to understand how

extreme precipitation events will emerge, e.g., for contingency planning and adaptation
measures.

There is evidence that maximum precipitation intensities increase with rising temperatures, and
that the increases relate to convective processes. Data on extremes is naturally sparse, which is
why statistical studies, though useful and applied in several fields, are inevitably accompanied by
large uncertainties. For events in the very far tails of probability density functions - or outliers -
these statistical uncertainties go sky high, and the estimated probabilities keep silence about the

physical processes that cause these rare extremes.

Thus we take a process-oriented approach and analyse the physical preconditioning of the largest
precipitation events in the climate-sensitive south-eastern Alpine forelands. Several "freak” events
are known to have poured down more than 300 mm over parts of our study region within just a
few hours. We hypothesize that in order to generate rare extremes of this kind, larger scale global
and regional preconditioning and local event conditions need to interfere. Furthermore, these
specific patterns might allow us to make a physically plausible delineation of the “freak” events as
opposed to the more frequent statistically describable extremes (e.g., by annual return periods).
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To better understand the uncertainties associated with rare extreme precipitation events, we analyse
the spatio-temporal character of extreme events and the conditions that favour their emergence to
find answers to the following research questions:

1. Are there thresholds that sparate rare extreme events (REEs) from statistical extreme events

(SEEs), and which physical processes push extreme precipitation events beyond this/these
threshold/s?

2. Are there patterns of preconditioning on the spatio-temporal event-, meso-, and macro-scales

- especially considering feedback interactions - that characterize REEs and distinguish them from
SEEs?

3. Can the findings on event- and regional scale preconditioning learned from the recent past be
transferred and used to draw physically plausible assumptions on future event conditions in a
warming climate?

An overarching uncertainty question” flanks our research, because we want to find ways to actively
deal with and embrace the inevitable uncertainties:

4. How can we deal with and take into account observation, sampling and physical uncertainties, and
the propagation of these uncertainties throughout the analysis?
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Observations from the ZAMG stations (pink lines: 99.9th percentile). Uncertainty in probability density functions naturally becomes Often the elephant in the
higher in the far tails. Looking for physically plausible conditioning patterns for the rare extremes can help understand the uncertainties. room: uncertainty

é High Resolution & Event-based

The study region of the south-eastern (Austrian) Alpine foreland region extends south of the main
eastern Alpine ridge from approx. 12°E to 16°E. Using mainly daily precipitation sums, previous

studies have examined synoptic patterns of heavy precipitation (Seibert et al. 2007) and the

climatology of extremes (Prettenthaler et al. 2010). Two datasets of station-based high resolution

precipitation records (Austrian Hydrographic Service AHYD and National Weather Service of

Austria ZAMG) allow us to lay a magnifying glass over our study region and to analyse the spatio-
temporal character of distinct extreme precipitation events as defined out of the high resolution

datasets.

After an initial analysis of the station data, the findings on the events’ character are connected to

the event preconditioning on the climate, synoptic and local event scale. The focus on rare
extreme events and process oriented research approach allow us the in-depth study of an
overseeable sample of events and to check the respective station and conditioning data for
plausibility.
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Study region and stations used in the analysis: High resolution data are available for 79 ZAMG stations used
(10 min) and for approx. 120 of the 225 AHYD stations (5 min) since the 1990s and early 2000s.
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® Initial Analysis

In a first step, we define precipitation events stationwise as time spans of consecutive wet days,
where a wet day must have seen a precipitation sum of at least 1 mm/d (day events). Within these
wet days, we distinguish hour events after the same principle with a wet hour precipitation sum of
0.2mm/h. We then calculate a ranked skill score RSS for each event based on a set of event indicators
that serve as a first characterization of our sample:
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Selected RSS indicators of day and hour events plotted dependent on event duration (top panels) and month
(lower panels). Short duration, localized, high intensity convective summer extremes are of primary interest both
due to the challenges they pose to climate modelling and the possibilities our high resolution data have to offer.
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