Universität Innsbruck

High-Resolution Spatio-Temporal Precipitation Climatology in Complex Terrain

Reto Stauffer, Georg J. Mayr, Jakob Messner, Nikolaus Umlauf, Achim Zeileis Contact: reto.stauffer@uibk.ac.at

Introduction

High-resolution spatio-temporal climatologies of precipitation are important for e.g., agriculture, risk assessments, or tourism.

Problem: large proportion of **zero-observations** for high (daily) temporal resolutions (dry days). **A common solution:** decrease the temporal resolution to **monthly** or **yearly** sums to remove zeros (*Goovaerts 2000, Hijmans 2005, ...*).

Our goal

Provide a methodology to create climatologies with:

- daily temporal resolution (requires handling of zero-observations)
- full climatological distribution
- fully scaleable spatial domain/resolution
- no need for extensive or manual tuning for new areas

Model Setup

Model Results

Figure 2 : Centered cyclic seasonal effect $f_1(yday)$. "**April weather**" (*blue*): increasing mean (μ) , local maximum of variability $(\log(\sigma))$. **Autumn** (*orange*): strongly decreasing mean (μ) with coincidentally increasing variability $(\log(\sigma))$.

Figure 3 : Centered longitude/latitude effect $f_2(\log, \operatorname{lat})$. Mean (μ): positive effect north while dry to the South/inner-alpine regions. Variance (log(σ)): weaker variability within the Alps.

y */ y :	latent/censored response
$\mathcal{N}(\dots)$:	Gaussian distribution
$f_k(\ldots)$:	non-linear multidimensional functions
μ/σ :	mean and standard deviation

linear predictor (identical for $\mu/\log(\sigma)$)

unknown coefficients

yday: day of the year

long/lat/alt: geographical information

Precipitation (**y**) is physically limited to \geq 0, which can be considered by an e.g., censored distribution (max(0, **y**^{*})). A novel Bayesian model framework was used to estimate the unknown coefficients (*R* package **bamlss**, Umlauf 2015).

 η :

 β :

Data & Data Analysis

Data set

- 110 stations with quality controlled data; 510–2300*m a.m.s.l.*
- 24*h* sums observed at 06*UTC*
- 42 years of data (85% data availability)
- \bullet 1'440'000 observations; fraction of zeros \sim 56%

Figure 4: Estimated expectation (*left*) and probability of precipitation (*right*), 3. September.
Innsbruck: expected precipitation amount: 3.5*mm*, probability of precipitation: 46%.
Hafelekar: expected precipitation amount: 6.4*mm*, probability of precipitation: 57%.

Summary & Outlook

Current status

- zero-observations properly handled by the censored distribution
- highly resolved **spatio-temporal** model; **adaptable** to arbitrary scales
- full climatological distribution; allows extracting quantiles/probabilities
 accurate estimate on station level

Figure 1 : Two sample stations; 0.90/0.75/0.50 quantiles are shown for both, the daily observed precipitation distribution over the last 33/24 years, and the in-sample fitted spatial climatology on a daily basis (final results).

Features captured by the statistical model

seasonal pattern vary with location (e.g., north/south; Fig. 1)
increased amount of precipitation during the summer season (Figs. 1&2)
independent seasonal pattern for mean (μ) and variance (σ) (‡; Figs. 1&2)
significantly drier south of the main Alpine ridge (Figs. 1&3)

Acknowledgements:

Ongoing project funded by the Austrian Science Fund (FWF): TRP 290-N26. The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). Data set provided by the "Ministerium für ein lebenswertes Österreich", hydrographical service Tyrol (ehyd.gv.at).

• "simple", generalized setup

Planned extensions

to include additional covariates (e.g., terrain dependent features, wind)
to test different distributions (e.g., censored logistic)
to include additional stations

• to **compare** with existing methods

References:

Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. *Journal of Hydrology*, **228 (1–2)**, 113–129.

Hijmans, R. J. et al., 2005: Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, **25 (15)**, 1965–1978.

Stauffer, R., et al., 2015: Spatio-temporal Censored Model of Precipitation Climatology. *Proceedings of IWSM 2015. Linz: Johannes Kepler University*, Proceedings Book **2015 (1)**, 366–371.

Umlauf, N., et al., 2015: bamlss: Bayesian Additive Models for Location Scale and Shape (and Beyond). *R package version 0.1-1* (https://R-Forge.R-project.org/R/?group_id=865).

